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Motivation
Explainable AI

▶ Claim: Learning on knowledge graphs can be ante-hoc globally
explainable and supports counterfactuals
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Section 2

Knowledge Graphs
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Knowledge Graphs
Definition

▶ Focus on RDF knowledge graphs
▶ Formally, every RDF graph G = (V,E), where

▶ V = R is the set of all resources
▶ E ⊆ R×P ×R where P is the set of all predicates
▶ RDF graphs are hence hypergraphs

https:
//towardsdatascience.com/
explainable-artificial-intelligence-14944563cc79
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Knowledge Graphs
ALC – Concepts

▶ ALC = Attributive Language with Complement
▶ Simplest closed DL (w.r.t. propositional logics)
▶ (Complex)ALC concepts are defined iteratively

▶ Every concept name is a concept
▶ ⊤ (“top”) and⊥ (“bottom”) are concepts

▶ Let C and D be concepts and r be a role. The following constructs
areALC concepts:
▶ ¬C (Negation or complement)
▶ C ⊓ D (Conjunction)
▶ C ⊔ D (Disjunction, union)
▶ ∃r.C (existential restriction)
▶ ∀r.C (universal restriction)
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Knowledge Graphs
ALC – Examples

Person ⊓ ∃hasChild.⊤

▶ Persons with at least one child
Animal ⊓ ∀eats.Plant
▶ Animals that only each plants

Professor ⊔ Student
▶ Professors or Students

Person ⊓ ∀bornIn.¬City
▶ Persons not born in a city
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Knowledge Graphs
ALC – Class expressions and Axioms

▶ EveryALC concept is a class expression
▶ Often need subsumption to learn models

▶ Let R be a retrieval function
▶ C ⊑ D iff R(C) ⊆ R(D)

▶ Example: Person ⊓ ∀bornIn.¬City ⊑ Person
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Motivation
Let’s play!

▶ What is 3+3?
▶ Square root of 4?
▶ What’s the capital of France?
▶ Close your eyes.
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Motivation
How does the brain form thoughts?

In a nutshell

▶ Using multiple representations seems to be useful for humans
▶ Are multiple representations beneficial for structured machine

learning?

▶ System 1 [Kahneman, 2011]
▶ Intuitive responses
▶ Time-efficient
▶ Unconscious

▶ System 2
▶ Logical responses
▶ Resource-intensive
▶ Conscious

▶ Both trainable and configurable
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Section 3

Class Expression Learning
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Class Expression Learning
Formal definition

▶ Supervised learning with background knowledge (adapted from
[Lehmann and Hitzler, 2010])

▶ Given:
▶ Formal logic L, e.g. ALC
▶ Background knowledge in form of knowledge base K = ⟨T ,A⟩
▶ Set of positive examples E+ ⊆ NI
▶ Set of negative examples E− ⊆ NI

▶ Goal: Find at least one hypothesis H ∈ H with
1. H is a class expression in L, and (ideally)
2. ∀e+ ∈ E+ : K |= H(e+)
3. ∀e− ∈ E− : K ̸|= H(e−)
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Class Expression Learning
Common Approach

Knowledge 
base

Training data Quality 
function

Candidate
generation

Retrieval 
function

Candidate 
solution
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Class Expression Learning
Example: L =ALC

▶ Let C and D beALC concepts
▶ Let r ∈ NR be a role
▶ Then, the following areALC concepts

Syntax Semantics

⊤ ∆I

⊥ ∅
C ∈ NC CI ⊆ ∆I

¬C ∆I\CI

C ⊓ D CI ∩ DI

C ⊔ D CI ∪ DI

∃r.C {x ∈ ∆I : ∃y ∈ CI with (x, y) ∈ rI}
∀r.C {x ∈ ∆I : (x, y) ∈ rI → y ∈ CI}
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Class Expression Learning
Example: Refinement Operator

▶ Let (S,⊑) be a space with a quasi-ordering
▶ A top-down refinement operator ρ : S→ 2S is a mapping with

ρ(x) ⊑ x
▶ Let S be the set of all concepts in our language L = EL
▶ The following operator ρ is a top-down refinement operator

▶ ρ(C) =



C
NC ∪ {∃rj.ρ(Ci)} if C = ⊤
ρ(D) if D ⊑ C
C ⊓ D with D ∈ NC

C ⊓ ∃r.ρ(D) with D ∈ NC
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Class Expression Learning
Example

1

▶ E+ = {Louvre,TourEiffel}
▶ E− = {Lily, James}

▶ H = {∃ isLocatedIn.Place,∃ isLocatedIn.{Paris}}

1Source:https://bit.ly/3sxCj6e
Ngonga: Explainable ML on KGs 21 / 78
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Learning problem
Challenges

Knowledge 
base

Training data Quality 
function

Candidate
generation

Retrieval 
function

Candidate 
solution

▶ Retrieval is expensive

⇒ Represent concepts in SPARQL
▶ Quality functions are often myopic⇒ Represent sets of individuals

as embeddings
▶ Candidate generation is expensive⇒ Represent individuals as

graphs for priming
▶ Search space is large⇒ Represent concepts as embeddings
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Section 4

Representing Concepts as SPARQL

Ngonga: Explainable ML on KGs 23 / 78



Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [Bin et al., 2016]

Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER ( ?cnt1 = ?cnt2 ) }

Ngonga: Explainable ML on KGs 24 / 78



Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [Bin et al., 2016]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.

¬C {?var ?p ?o} UNION {?s ?p ?var}.
FILTER NOT EXISTS {τ (C, ?var)}

C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER ( ?cnt1 = ?cnt2 ) }

Ngonga: Explainable ML on KGs 24 / 78



Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [Bin et al., 2016]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}

C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER ( ?cnt1 = ?cnt2 ) }

Ngonga: Explainable ML on KGs 24 / 78



Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [Bin et al., 2016]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}

C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER ( ?cnt1 = ?cnt2 ) }

Ngonga: Explainable ML on KGs 24 / 78



Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [Bin et al., 2016]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}

∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER ( ?cnt1 = ?cnt2 ) }

Ngonga: Explainable ML on KGs 24 / 78



Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [Bin et al., 2016]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}

∀ r.C { ?var r ?s0.
{ SELECT ?var (count(?s1) AS ?cnt1)

WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER ( ?cnt1 = ?cnt2 ) }

Ngonga: Explainable ML on KGs 24 / 78



Representing Concepts as SPARQL
FromALC to SPARQL

▶ Assume closed world and fully materialized knowledge graph
▶ Retrieval inALC can be realized by representing concepts as

SPARQL queries [Bin et al., 2016]
Class Expression Graph Pattern p = τ(Ci, ?var)

A ∈ NC ?var rdf:type A.
¬C {?var ?p ?o} UNION {?s ?p ?var}.

FILTER NOT EXISTS {τ (C, ?var)}
C1 ⊓ . . . ⊓ Cn {τ (C1, ?var) . . . τ (Cn, ?var)}
C1 ⊔ . . . ⊔ Cn {τ (C1, ?var)} UNION . . . UNION {τ (Cn, ?var)}
∃ r.C {?var r ?s. τ (C, ?s)}
∀ r.C { ?var r ?s0.

{ SELECT ?var (count(?s1) AS ?cnt1)
WHERE { ?var r ?s1. τ(C, ?s1)}
GROUP BY ?var }

{ SELECT ?var (count(?s2) AS ?cnt2)
WHERE { ?var r ?s2 .}
GROUP BY ?var }

FILTER ( ?cnt1 = ?cnt2 ) }
Ngonga: Explainable ML on KGs 24 / 78



Representing Concepts as SPARQL
Storage Solutions

▶ Important difference are indexing data structures
▶ Typical indexes include

▶ Resource index, e.g., a hash table
▶ Triple index, e.g., a B+ tree
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Representing Concepts as SPARQL
TENTRIS: Idea

Idea [Bigerl et al., 2020]
▶ Exploit tensor representation to accelerate querying
▶ Devise data structure to accommodate rapid querying
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Representing Concepts as SPARQL
From RDF to Tensors

:e1 :e2

:e3 :e4

dbr:Unicorn

foaf:knows
rdf:type

term id(term)

:e1 1
foaf:knows 2

:e2 3
:e3 4
:e4 5

rdf:type 6
dbr:Unicorn 7
unbound 8

id(s) id(p) id(o)

1 2 3
1 2 4
3 2 4
3 2 5
4 2 3
4 2 5
3 6 7
5 6 7
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Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Consider order-n tensors T : K = K1 × · · · × Kn → V

▶ K1 = · · · = Kn ⊂ N
▶ B or N as co-domain

▶ k ∈ K is a key with key parts ⟨k1, . . . , kn⟩
▶ Values v in a tensor are accessed in array style, e.g., T[k] = v
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Representing Concepts as SPARQL
TENTRIS: Data Model

▶ K = N3

▶ V = B
▶ T[⟨3,6, 7⟩] = 1
▶ T[⟨3,6,3⟩] = 0
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Representing Concepts as SPARQL
TENTRIS: Data Model

▶ Slicing selects portion of T, e.g., T(1) := T[1,2, :] is order-1 tensor

▶ For our example, T[1,2, :] = [0,0, 1, 1,0,0,0,0]
▶ Slices can be joined via Einstein summation [Barr, 1989]
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Representing Concepts as SPARQL
TENTRIS–Einstein Summation

1 SELECT ?f WHERE {
2 :e1 foaf:knows ?f .
3 ?f foaf:knows ?u .
4 ?u rdf:type dbr:Unicorn
5 }

T[1,2, :] T[:,2, :] T[:,6, 7]

Rf ← T[1,2, :]f × T[:,2, :]f,u × T[:,6, 7]u
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Representing Concepts as SPARQL
TENTRIS: Querying

▶ Triple pattern is mapped to

k(Q)i :=

{
: , if Qi ∈ U,
id(Qi), otherwise.

▶ BGP B = {B(1), . . . ,B(r)} is given by

T′
⟨l∈U⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩

▶ The projection ΠU′(B(g)) with U′ ⊆ U is given by

T′′
⟨l∈U′⟩ ←×

i

T[kB(i)
]⟨l∈B(i)|l∈U⟩
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Representing Concepts as SPARQL
TENTRIS: Hypertrie

▶ Query for any tensor slice efficiently
▶ Allow for efficient querying

1 3 4 5

2 62

3 4 74 5

2

5

6

7

T

T[3, : , : ]

3
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Representing Concepts as SPARQL
TENTRIS: Hypertrie

( : , : , : 〉
1 2 3

41 3 5 2 6 53 4 7

〈3, : , : 〉

2 46 5

〈3, 6, : 〉〈3, 2, : 〉 〈3, : , 4〉 〈3, : , 5〉 〈3, : , 7〉

1 2
7

7 2 2 6

 〈 : , 2, : 〉

3 4
2

 〈 : , 2, 4〉 〈 : , 2, 5〉

3

5

1

〈 : , 2, 3〉

1

 〈 : , 6, : 〉

1
3 5

 〈 : , : , 4〉

1 23
1 2

 〈 : , : , 3〉

1 2
1 2

54

1
1 3 4

43

7
2…… …

… … … …

…
…

……

… ……… …

…

…

▶ Query for any tensor slice efficiently
▶ Storage bound is reduced fromO(d! · d · z(h)) for all collation

orders toO(2d−1 · d · z(h))
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Representing Concepts as SPARQL
TENTRIS: Evaluation – Setup

▶ Evaluation via HTTP and CLI
▶ Timeout = 180 s
▶ Benchmark runtime = 60min
▶ Comparison with

▶ Virtuoso 7.2.5,
▶ Fuseki 3.5.0,
▶ Blazegraph v2.0, and
▶ GraphDB Lite v.8.3.1

Dataset #Q #TP #R #D avg JVD >5000 results

SWDF 203 1.74 (1 - 9) 5.5 k (1 - 304 k) 124 (61%) 0.75 (0 - 4) 18 (8.9%)
DBpedia 557 1.84 (1 - 14) 13.2 k (0 - 843 k) 222 (40%) 1.19 (0 - 4) 73 (13.1%)
WatDiv 45 6.51 (2 - 10) 3.7 k (0 - 34 k) 2 (4%) 2.61 (2 - 9) 9 (20.0%)
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Representing Concepts as SPARQL
TENTRIS: Evaluation – SWDF
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Representing Concepts as SPARQL
TENTRIS: Evaluation – DBpedia
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Representing Concepts as SPARQL
TENTRIS: Evaluation – WatDiv
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Representing Concepts as SPARQL
TENTRIS: Evaluation – Speedup
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Learning problem
Challenges

Knowledge 
base

Training data Quality 
function

Candidate
generation

Retrieval 
function

Candidate 
solution

! Retrieval is expensive⇒ Represent concepts in SPARQL

▶ Quality functions are often myopic⇒ Exploit representation as
embeddings

▶ Candidate generation is expensive⇒ Exploit subgraphs for priming
▶ Search space is large⇒ Embed concept representations
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Section 5

Improving Quality Functions
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Improving Quality Functions
Refinement Operators

▶ Implement informed search in space S of all concepts with partial
ordering⊑

▶ Refinement operator ρ : S → 2S with
▶ ∀x ∈ ρ(s) : x ⊑ s (downward)
▶ ∀x ∈ ρ(s) : s ⊑ x (upward)
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Improving Quality Functions
Quality Functions – OCEL

▶ Let R(C) be the set of instances of C
▶ Let C′ be the parent concept of C in the search tree

▶ Accuracy and accuracy gain of a concept C are defined as

acc(C) = 1− |E
+ \ R(C)|+ |R(C) ∩ E−|

|E|
acc_gain(C) = acc(C)− acc(C′)

▶ The score is given by

score(C) = acc(C) + α · acc_gain(C)− β · |C| (α, β ≥ 0),

where α = 0.5 and β = 0.02 are typical default values.
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Improving Quality Functions
Quality Functions – CELOE

▶ Accuracy metric accc for CELOE:

accc(C, t) =
1

t+ 1
·

(
t · |E

+ ∩ R(C)|
|E+|

+

√
|E+ ∩ R(C)|
|R(C)|

)
acc_gainc(C) = accc(C, t)− accc(C′, t)

▶ score(C) = accc(C, t) + α · acc_gainc(C)− β · |C| (α, β ≥ 0)
where typical values are α = 0.3 and β = 0.05.

Problem: Myopia

▶ Current metrics do not consider future accuracy of concepts
▶ Optimize for cumulative discounted future rewards

[Demir and Ngonga Ngomo, 2021]
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Improving Quality Functions
Reinforcement Learning5/31/22, 1:17 PM https://upload.wikimedia.org/wikipedia/commons/d/da/Markov_diagram_v2.svg

https://upload.wikimedia.org/wikipedia/commons/d/da/Markov_diagram_v2.svg 1/1

▶ St = Concept C

▶ Rt =

{
1 if acc(C) = 1
0 else

▶ At = Transition from concept C to some concept D
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Improving Quality Functions
Reinforcement Learning – Q Function

▶ Maximize

Gt =
n∑

i=0

γ iRt+i

▶ Optimize state-action value function Qπ : S× A→ R with

Qπ(s, a) = Eπ [Gt | St = s,At = a]

▶ Observation: Infinite number of states as search space is infinite
▶ Apply deep Q learning with target network [Mnih et al., 2015]

L(Θi) = E(s,a,R,s′)∼U(D)

[(
R+γ max

a′∈A(s′)
Q(s′, a′; Θ−

i )−Q(s, a; Θi)
)2]
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Improving Quality Functions
Reinforcement Learning – DRILL

▶ Convolutional deep Q-Network with Θ = [ω,W,H]

φ([s, s′, e+, e−]; Θ) = ReLU
(
vec(ReLU

[
Ψ([s, s′, e+, e−])∗ω

]
)·W
)
·H

Source: [Mao et al., 2016]
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Improving Quality Functions
TransE

▶ Assumptions
▶ Resources and properties are vectors
▶ If (s, p,o) ∈ E, then s⃗+ p⃗ = o⃗

▶ Translates to loss

Lpos =
∑

(s,p,o)∈E

d(⃗s+ p⃗, o⃗)

▶ Problem 1: Loss function converges to trivial solution for vectors of
arbitrary length

▶ Solution: Normalize vectors for s and o
▶ Loss is now

Lpos =
∑

(s,p,o)∈E

d(⃗s+ p⃗, o⃗) with ||⃗s|| = ||⃗o|| = 1
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Improving Quality Functions
TransE

▶ Problem 1 not solved yet but
▶ Problem 2: No use of negative information

▶ Solution: Add negative information and margin γ ∈ R+

▶ Loss is now

L =
∑

(s,p,o)∈E

∑
(s′,p,o′)∈S′(s,p,o)

[γ + d(⃗s+ p⃗, o⃗)− d(s⃗′ + p⃗, o⃗′)]+

where
▶ S′(s, p,o) = sample({(s′, p,o)|s′ ∈ V} ∪ {(s, p,o′)|o′ ∈ V}, 1)
▶ S′(s, p,o) ∩ E = ∅
▶ [x]+ = max{0, x}
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Improving Quality Functions
TransE

▶ Input: Training set S, margin γ, embedding dimension k
▶ Init

▶ p⃗ = randomUniformSample(−6/
√
k,6/

√
k) for all p

▶ p⃗ = p⃗/||⃗p||
▶ x⃗ = randomUniformSample(−6/

√
k,6/

√
k) for all x ∈ V

▶ Loop until convergence
▶ x⃗ = x⃗/||⃗x|| for all x ∈ V
▶ Sbatch = sample(S, b) // get mini-batch of size b from S
▶ Tbatch = Tbatch ∪ {((s, p,o), sample(S′(s, p,o), 1))} for all

(s, p,o) ∈ Sbatch
▶ Update embeddings w.r.t.∑

((s,p,o),(s′,p,o′))∈Tbatch

∇[γ + d(⃗s+ p⃗, o⃗)− d(s⃗′ + p⃗, o⃗′)]+

▶ Note: Learning via balanced mini-batches with random negative
samples

▶ Note: Derivative only for portions of the loss > 0
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Improving Quality Functions
Quaternions: H

▶ Multiplication rules
▶ x = x0 + ix1 + jx2 + kx3 (with i2 = j2 = k2 = ijk = −1)
▶ ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j (loss of

commutativity)

▶ Can define embeddings in this space: QuatE
▶ s⃗, p⃗, o⃗ ∈ Hk

▶ p⃗◁ = p⃗/||⃗p|| (normalized vector p⃗)
▶ Scoring function φ(s, p,o) = (⃗s⊗ p⃗◁) · o⃗, where

▶ ⊗ is the Hamiltonian product (H×H → H)
▶ · is the quaternion inner product (H×H → R)

▶ Loss function over training data Γ with Yspo ∈ {−1,+1} is given by
min
s⃗,⃗p,⃗o

∑
(s,p,o)∈Γ

log(1+ exp(−Yspoφ(s, p,o)))

▶ Similar construction for octonions
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Improving Quality Functions
Unsupervised Learning – Training Data

▶ Follow refinement path at random
▶ Select concept C
▶ Set E+ ⊆ R(C) and E− ∩ R(C) = ∅
E+ = {Individuals with a sister }
E− = {Individuals with no sister}

⊤

Person . . . Place . . . Organisation

Person ⊓ ∃hasSibling.⊤

Person ⊓ ∀hasSibling.Person . . . Person ⊓ ∃hasSibling.Female
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Improving Quality Functions
Evaluation

▶ Used Family und BioPax datasets
▶ Evaluation on 114 learning problems

Approaches F1 Acc Runtime # Exp.

CELOE .995± 0.03 .993± 0.04 7.5± 1.1 33.5± 129.3
OCEL * 1.00± 0.00 11.0± 1.4 2271.6± 1269.2
ELTL .990± 0.06 .984± 0.09 8.1± 1.6 *
DRILL 1.00± 0.00 1.00± 0.00 1.1± 0.5 9.88± 38.5
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Learning problem
Challenges

Knowledge 
base

Training data Quality 
function

Candidate
generation

Retrieval 
function

Candidate 
solution

! Retrieval is expensive⇒ Represent concepts in SPARQL
! Quality functions are often myopic⇒ Exploit representation as

embeddings

▶ Candidate generation is expensive⇒ Exploit subgraphs for priming
▶ Search space is large⇒ Embed concept representations
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Section 6

Learning with Priming
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Learning with Priming
EVOLEARNER – Idea

▶ Represent concepts as trees, e.g.,
(Female ⊔ Parent) ⊓ ∃married.Male

▶ Learn in evolutionary fashion using genetic programming
▶ Exploit priming effect (remember the green apple)
▶ Intuition: An individual is an overlap several concepts

[Heindorf et al., 2022]

Parent Male

married

Female
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Learning with Priming
EVOLEARNER – Initialisation

Instances

Types

Person 1

Person 1

Male

Male

Grandfather Father

Person 2

Person 2

married

married

Mother
Female

Person 3

Person 3

hasSibling

hasSibling

Female
Parent

Parent

. . .

. . .

Person 4
hasParent

Person 5

Person 5

hasChild

hasChild

Child

Child

Male

. . .
. . .

1. Select a positive example e+ and one of its types: Male

2. Randomly select up to maxT outgoing triples of e+ :
Male ⊓ ( ∃married . . . ⊓ ∃hasChild . . .)

3. Complete incomplete subconcepts:
Male ⊓ ((∃married. ∃hasSibling.Parent) ⊓ ( ∃hasChild.Child))
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Learning with Priming
EVOLEARNER – Data Properties

▶ Given a data property d from the knowledge base K and a set E of
positive and negative examples

▶ We precompute up to k splits of the form d ≤ v̄i per data property
▶ Splits are computed to maximize information gain:

IG(E, v̄i) = H(E)− H(E|v̄i) = H(E)−
(
|EL|
|E|

H(EL) +
|ER|
|E|

H(ER)

)
E

EL ER

p ≤ v̄i p > v̄i
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Learning with Priming
EVOLEARNER – Training

Initialization
create randomly

Selection
select best

Crossover
combine pairs

Mutation
change slightly

0.23
0.15
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Learning with Priming
EVOLEARNER – Evaluation

EvoLearner DL-Learner DL-Learner Aleph SPaCEL
Learn. Problem (ours) (CELOE) (OCEL)

Carcinogenesis 0.70± 0.12 0.71 ± 0.01 no results 0.46± 0.12 0.60± 0.08
Family 1.00 ± 0.01 0.98± 0.05 1.00 ± 0.00 — 0.97± 0.11
Hepatitis 0.79 ± 0.08 0.61± 0.03 no results 0.38± 0.12 no results
Lymphography 0.84 ± 0.09 0.78± 0.10 0.85 ± 0.10 0.84± 0.09 0.75± 0.13
Mammographic 0.81 ± 0.06 0.64± 0.01 0.78± 0.08 0.48± 0.08 0.64± 0.06
Mutagenesis 1.00 ± 0.00 0.93± 0.14 timeout 0.43± 0.47 1.00 ±0.00
NCTRER 1.00 ± 0.00 0.74± 0.01 0.94± 0.06 0.71± 0.18 1.00 ± 0.00
Premier League 1.00 ± 0.00 0.99± 0.04 0.81± 0.13 0.94± 0.11 0.98± 0.04
Pyrimidine 0.91 ± 0.14 0.84± 0.15 0.84± 0.22 0.90± 0.32 0.86± 0.29
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Learning with Priming
EVOLEARNER – Ablation Study

EvoLearner Without Without Without
Learning Problem (ours) Rand. Walk Init. Data Properties Both

Carcinogenesis 0.70 ± 0.12 0.60 ± 0.21 0.63 ± 0.13 0.62 ± 0.13
Family 1.00 ± 0.01 0.87 ± 0.13 — 0.86 ± 0.14
Hepatitis 0.79 ± 0.08 0.67 ± 0.15 0.46 ± 0.14 0.47 ± 0.13
Lymphography 0.84 ± 0.09 0.83 ± 0.11 — 0.83 ± 0.09
Mammographic 0.81 ± 0.06 0.78 ± 0.08 0.77 ± 0.07 0.75 ± 0.06
Mutagenesis 1.00 ± 0.00 1.00 ± 0.00 0.44 ± 0.48 0.50 ± 0.51
NCTRER 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.05 0.75 ± 0.05
Premier League 1.00 ± 0.00 0.98 ± 0.04 0.50 ± 0.23 0.50 ± 0.22
Pyrimidine 0.91 ± 0.14 0.83 ± 0.22 0.67 ± 0.00 0.67 ± 0.00
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Learning problem
Challenges

Knowledge 
base

Training data Quality 
function

Candidate
generation

Retrieval 
function

Candidate 
solution

! Retrieval is expensive⇒ Represent concepts in SPARQL
! Quality functions are often myopic⇒ Exploit representation as

embeddings

! Candidate generation is expensive⇒ Exploit subgraphs for priming
▶ Search space is large⇒ Represent concepts as embeddings

[Kouagou et al., 2022]
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Section 7

CLIP
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CLIP
Concept Lengths

▶ length(A) = length(⊤) = length(⊥) = 1 (A atomic concept)

▶ length(¬C) = 1+ length(C), for all concepts C
▶ length(∃ r.C) = length(∀ r.C) = 2+ length(C), for all concepts C
▶ length(C ⊔ D) = length(C ⊓ D) = 1+ length(C) + length(D),

for all concepts C and D.
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CLIP
Approach

▶ Learn concept lengths
▶ Predict target concept length and discard longer refinements
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CLIP
Concept Length Prediction

Embedding DNNJohn

Peter, Anna,
Jack

7

▶ Input: positive and negative examples
▶ Output: length of the target concept
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CLIP
Concept Learning
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CLIP
Training
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CLIP
Validation
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CLIP
Network Architecture

Carcinogenesis Mutagenesis

Metric LSTM GRU CNN MLP RM LSTM GRU CNN MLP RM

Train. Acc. 0.89 0.96 0.97 0.80 0.48 0.83 0.97 0.98 0.68 0.33
Val. Acc. 0.76 0.93 0.82 0.77 0.48 0.70 0.82 0.71 0.65 0.35
Test Acc. 0.92 0.95 0.84 0.80 0.49 0.78 0.85 0.70 0.68 0.33
Test F1 0.88 0.92 0.71 0.59 0.33 0.76 0.85 0.70 0.67 0.32

Semantic Bible Vicodi

Metric LSTM GRU CNN MLP RM LSTM GRU CNN MLP RM

Train. Acc. 0.85 0.93 0.99 0.68 0.33 0.73 0.81 0.83 0.66 0.28
Val. Acc. 0.49 0.58 0.44 0.46 0.26 0.55 0.77 0.70 0.64 0.30
Test Acc. 0.52 0.53 0.37 0.40 0.25 0.66 0.80 0.69 0.66 0.29
Test F1 0.27 0.38 0.20 0.22 0.16 0.45 0.50 0.45 0.38 0.20
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CLIP
Comparison with SOTA

Carcinogenesis

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.78± 0.27 0.89± 0.31 0.58± 0.46 0.99 ± 0.00
F1 ↑ 0.62± 0.46 − 0.51± 0.47 0.96∗ ± 0.10
Runtime (min) ↓ 0.93± 0.94 3.01± 0.72 0.75± 0.07 0.10∗ ± 0.09
Length ↓ 1.69± 0.89 7.81± 6.88 1.04± 0.39 2.00 ± 1.28

Mutagenesis

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.99± 0.00 0.71± 0.45 0.37± 0.43 0.99 ± 0.00
F1 ↑ 0.81± 0.35 − 0.29± 0.40 0.93∗ ± 0.18
Runtime (min) ↓ 0.70± 0.77 2.39± 0.18 0.29± 0.16 0.07∗ ± 0.05
Length ↓ 2.79± 1.17 12.63± 7.03 1.10± 0.81 2.20 ± 1.16

Semantic Bible

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.99± 0.02 0.66± 0.47 0.59± 0.37 0.99 ± 0.00
F1 ↑ 0.97± 0.10 − 0.57± 0.38 0.98 ± 0.05
Runtime (min) ↓ 0.47± 0.80 22.15± 96.55 0.09± 0.07 0.06∗ ± 0.05
Length ↓ 3.85± 2.44 9.54± 5.73 1.38± 1.76 2.52∗ ± 1.26

Vicodi

Metric CELOE OCEL ELTL CLIP

Acc. ↑ 0.29± 0.44 0.25± 0.43 0.28± 0.44 0.99∗ ± 0.00
F1 ↑ 0.25± 0.44 − 0.25± 0.44 0.97∗ ± 0.09
Runtime (min) ↓ 1.30± 0.71 4.78± 1.12 1.81± 0.46 0.16∗ ± 0.12
Length ↓ 10.79± 6.30 11.54± 6.00 11.14± 6.11 1.68∗ ± 0.98
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Section 8

Summary
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Summary
Open Questions

Holy Grail

▶ Can the selection of representations be automated?
▶ LEMUR and ENEXA

▶ Tensors: Variable ordering?
Compressed data structure?

▶ RL: Reduce training costs?
Hyperparameters?
Embeddings?

▶ Evolutionary learning: Myopia?
Runtime? Continuous data?
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Summary
Thank You!

Joint works with Alexander Bigerl, Caglar Demir, Hamada Zahera, N’Dah
Jean Kouagou, Nikoloas Karalis, Stefan Heindorf, Mohamed Sherif,
Muhammed Saleem, and many more

Thank You!
Questions?

▶ https://dice-research.org
▶ https://twitter.com/DiceResearch
▶ https://twitter.com/NgongaAxel
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