

Explainable ML on KGs

Recent Advances

Axel Ngonga

Lecture at the Data Science Summer School 2022

October 7, 2022

Section 1

Motivation

Ngonga: Explainable ML on KGs

1/78

Automated Decision Making - Bail

Automated Decision Making – Loans

Automated Decision Making – Policing

Motivation Cooking Robot

- New cooking environment
- Unknown cookware
- Which utensil should be used to chop apples and why?

Explainable AI

- Explain global output of machine learning model
- Explain important features
- Explain via counterfactuals

Motivation Cooking Robot

- New cooking environment
- Unknown cookware
- Which utensil should be used to chop apples and why?
- Idea: Learn based on previous experiences or external knowledge sources

Motivation Cooking Robot

- New cooking environment
- Unknown cookware
- Which utensil should be used to chop apples and why?
- Idea: Learn based on previous experiences or external knowledge sources

- ► Example: ChoppingDevice
 ∃hasBladeLength. {15, 16, 17}
- ► Pro: explainable, exploits background knowledge
- ► Contra: slow :-(

Explainable AI

 Claim: Learning on knowledge graphs can be ante-hoc globally explainable and supports counterfactuals

Ngonga: Explainable ML on KGs

Section 2

Knowledge Graphs

Ngonga: Explainable ML on KGs

9/78

Definition

- Focus on RDF knowledge graphs
- Formally, every RDF graph G = (V, E), where
 - $V = \mathcal{R}$ is the set of all resources
 - $E \subseteq \mathcal{R} \times \mathcal{P} \times \mathcal{R}$ where \mathcal{P} is the set of all predicates
 - ► RDF graphs are hence hypergraphs

//towardsdatascience.com/

explainable-artificial-intelligence-14944563cc79

Ngonga: Explainable ML on KGs

Knowledge Graphs ALC - Concepts

- ► *ALC* = Attributive Language with Complement
- Simplest closed DL (w.r.t. propositional logics)
- ► (Complex) *ALC* concepts are defined iteratively
 - Every concept name is a concept
 - \top ("top") and \perp ("bottom") are concepts

- ► *ALC* = Attributive Language with Complement
- Simplest closed DL (w.r.t. propositional logics)
- ► (Complex) *ALC* concepts are defined iteratively
 - Every concept name is a concept
 - ▶ \top ("top") and \bot ("bottom") are concepts
- ► Let *C* and *D* be concepts and *r* be a role. The following constructs are *ALC* concepts:
 - $\neg C$ (Negation or complement)

- ► *ALC* = Attributive Language with Complement
- Simplest closed DL (w.r.t. propositional logics)
- ► (Complex) *ALC* concepts are defined iteratively
 - Every concept name is a concept
 - ▶ \top ("top") and \bot ("bottom") are concepts
- ► Let *C* and *D* be concepts and *r* be a role. The following constructs are *ALC* concepts:
 - $\neg C$ (Negation or complement)
 - ► C □ D (Conjunction)

- ► *ALC* = Attributive Language with Complement
- Simplest closed DL (w.r.t. propositional logics)
- ► (Complex) *ALC* concepts are defined iteratively
 - Every concept name is a concept
 - ▶ \top ("top") and \bot ("bottom") are concepts
- ► Let *C* and *D* be concepts and *r* be a role. The following constructs are *ALC* concepts:
 - $\neg C$ (Negation or complement)
 - ► C □ D (Conjunction)
 - $C \sqcup D$ (Disjunction, union)

ALC – Concepts

- ► *ALC* = Attributive Language with Complement
- Simplest closed DL (w.r.t. propositional logics)
- ► (Complex) *ALC* concepts are defined iteratively
 - Every concept name is a concept
 - ▶ \top ("top") and \bot ("bottom") are concepts
- ► Let *C* and *D* be concepts and *r* be a role. The following constructs are *ALC* concepts:
 - $\neg C$ (Negation or complement)
 - ► C □ D (Conjunction)
 - $C \sqcup D$ (Disjunction, union)
 - ► ∃*r*.*C* (existential restriction)

- ► *ALC* = Attributive Language with Complement
- Simplest closed DL (w.r.t. propositional logics)
- ► (Complex) *ALC* concepts are defined iteratively
 - Every concept name is a concept
 - ▶ \top ("top") and \bot ("bottom") are concepts
- ► Let *C* and *D* be concepts and *r* be a role. The following constructs are *ALC* concepts:
 - $\neg C$ (Negation or complement)
 - ► C □ D (Conjunction)
 - $C \sqcup D$ (Disjunction, union)
 - ► ∃*r*.*C* (existential restriction)
 - ► ∀*r*.*C* (universal restriction)

 \mathcal{ALC} – Examples

Person $\sqcap \exists hasChild. \top$

 \mathcal{ALC} – Examples

Person $\sqcap \exists hasChild. \top$

Persons with at least one child

Animal ⊓ ∀eats.Plant

 \mathcal{ALC} – Examples

Person $\sqcap \exists hasChild. \top$

Persons with at least one child

Animal ⊓ ∀eats.Plant

Animals that only each plants

Professor 🗆 Student

 \mathcal{ALC} – Examples

Person $\sqcap \exists hasChild. \top$

Persons with at least one child

Animal ⊓ ∀eats.Plant

Animals that only each plants

Professor 🗆 Student

Professors or Students

Person $\sqcap \forall bornIn. \neg City$

 \mathcal{ALC} – Examples

Person $\sqcap \exists hasChild. \top$

Persons with at least one child

Animal □ ∀eats.Plant

Animals that only each plants

Professor 🗆 Student

Professors or Students

Person □ ∀bornIn.¬City

Persons not born in a city

 \mathcal{ALC} – Class expressions and Axioms

- ► Every *ALC* concept is a class expression
- Often need subsumption to learn models
 - Let R be a retrieval function
 - $C \sqsubseteq D$ iff $R(C) \subseteq R(D)$
- Example: $Person \sqcap \forall bornIn. \neg City \sqsubseteq Person$

Ngonga: Explainable ML on KGs

► Square root of 4?

- ► What is 3+3?
- ► Square root of 4?
- ► What's the capital of France?

- ► What is 3+3?
- ► Square root of 4?
- ► What's the capital of France?
- ► Close your eyes.

How does the brain form thoughts?

- ► System 1 [Kahneman, 2011]
 - Intuitive responses
 - Time-efficient
 - Unconscious

How does the brain form thoughts?

- ► System 1 [Kahneman, 2011]
 - Intuitive responses
 - Time-efficient
 - Unconscious
- ► System 2
 - Logical responses
 - Resource-intensive
 - Conscious

How does the brain form thoughts?

- ► System 1 [Kahneman, 2011]
 - Intuitive responses
 - Time-efficient
 - Unconscious
- ► System 2
 - Logical responses
 - Resource-intensive
 - Conscious
- ► Both trainable and configurable

How does the brain form thoughts?

In a nutshell

- Using multiple representations seems to be useful for humans
- Are multiple representations beneficial for structured machine learning?
- ► System 1 [Kahneman, 2011]
 - Intuitive responses
 - Time-efficient
 - Unconscious
- System 2
 - Logical responses
 - Resource-intensive
 - Conscious
- ► Both trainable and configurable

Section 3

Class Expression Learning

Ngonga: Explainable ML on KGs

16/78

Class Expression Learning Formal definition

Supervised learning with background knowledge (adapted from [Lehmann and Hitzler, 2010])

- ► Given:
 - ► Formal logic \mathcal{L} , e.g. \mathcal{ALC}
 - ► Background knowledge in form of knowledge base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - Set of positive examples $E^+ \subseteq N_I$
 - Set of negative examples $E^- \subseteq N_I$

Class Expression Learning Formal definition

Supervised learning with background knowledge (adapted from [Lehmann and Hitzler, 2010])

- ► Given:
 - Formal logic \mathcal{L} , e.g. \mathcal{ALC}
 - ► Background knowledge in form of knowledge base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - Set of positive examples $E^+ \subseteq N_I$
 - Set of negative examples $E^- \subseteq N_I$
- Goal: Find at least one hypothesis $H \in \mathcal{H}$ with
 - 1. *H* is a class expression in \mathcal{L} , and (ideally)

2.
$$\forall e^+ \in E^+ : \mathcal{K} \models H(e^+)$$

3. $\forall e^- \in E^- : \mathcal{K} \not\models H(e^-)$

Class Expression Learning

Common Approach

Class Expression Learning

Example: $\mathcal{L} = \mathcal{ALC}$

- ► Let *C* and *D* be *ALC* concepts
- Let $r \in N_R$ be a role
- \blacktriangleright Then, the following are \mathcal{ALC} concepts

Syntax	Semantics
Т	$\Delta^{\mathcal{I}}$
\perp	Ø
$C \in N_C$	$\mathcal{C}^\mathcal{I} \subseteq \Delta^\mathcal{I}$
$\neg C$	$\Delta^{\mathcal{I}} \setminus \mathcal{C}^{\mathcal{I}}$
$C \sqcap D$	$\mathcal{C}^\mathcal{I} \cap \mathcal{D}^\mathcal{I}$
$C \sqcup D$	$\mathcal{C}^\mathcal{I} \cup \mathcal{D}^\mathcal{I}$
∃r.C	$\{x \in \Delta^{\mathcal{I}} : \exists y \in C^{\mathcal{I}} \text{ with } (x, y) \in r^{\mathcal{I}}\}$
∀r.C	$\{x\in\Delta^{\mathcal{I}}:(x,y)\in r^{\mathcal{I}} ightarrow y\in\mathcal{C}^{\mathcal{I}}\}$

Class Expression Learning

Example: Refinement Operator

- ► Let (S, \sqsubseteq) be a space with a quasi-ordering
- A top-down refinement operator $\rho : S \to 2^S$ is a mapping with $\rho(x) \sqsubseteq x$
- $\blacktriangleright\,$ Let S be the set of all concepts in our language $\mathcal{L}=\mathcal{EL}$
- The following operator ρ is a top-down refinement operator

$$\blacktriangleright \ \rho(C) = \begin{cases} C \\ N_C \cup \{ \exists r_j . \rho(C_i) \} & \text{if } C = \top \\ \rho(D) & \text{if } D \sqsubseteq C \\ C \sqcap D & \text{with } D \in N_C \\ C \sqcap \exists r . \rho(D) & \text{with } D \in N_C \end{cases}$$

Class Expression Learning Example

E⁺ = {Louvre, TourEiffel}
 E⁻ = {Lily, James}

Ngonga: Explainable ML on KGs

¹Source:https://bit.ly/3sxCj6e

Class Expression Learning Example

- $E^+ = \{Louvre, TourEiffel\}$
- ► $E^- = \{Lily, James\}$
- $\mathcal{H} = \{\exists isLocatedIn.Place, \exists isLocatedIn.\{Paris\}\}$

Ngonga: Explainable ML on KGs

¹Source:https://bit.ly/3sxCj6e

Retrieval is expensive

- ► Retrieval is expensive ⇒ Represent concepts in SPARQL
- Quality functions are often myopic

- ► Retrieval is expensive ⇒ Represent concepts in SPARQL
- ► Quality functions are often myopic ⇒ Represent sets of individuals as embeddings
- Candidate generation is expensive

- ► Retrieval is expensive ⇒ Represent concepts in SPARQL
- ► Quality functions are often myopic ⇒ Represent sets of individuals as embeddings
- ► Candidate generation is expensive ⇒ Represent individuals as graphs for priming

- ► Retrieval is expensive ⇒ Represent concepts in SPARQL
- ► Quality functions are often myopic ⇒ Represent sets of individuals as embeddings
- ► Candidate generation is expensive ⇒ Represent individuals as graphs for priming
- Search space is large

- ► Retrieval is expensive ⇒ Represent concepts in SPARQL
- ► Quality functions are often myopic ⇒ Represent sets of individuals as embeddings
- ► Candidate generation is expensive ⇒ Represent individuals as graphs for priming
- ► Search space is large ⇒ Represent concepts as embeddings

Section 4

Representing Concepts as SPARQL

Ngonga: Explainable ML on KGs

23/78

- ► Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [Bin et al., 2016]

From \mathcal{ALC} to SPARQL

- ► Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [Bin et al., 2016]

Class Expression Graph Pattern $p = \tau(C_i, ?var)$

 $A \in N_C$?var rdf:type A.

- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [Bin et al., 2016]

Class Expression	Graph Pattern $\mathfrak{p}= au(\mathcal{C}_i, \texttt{?var})$
$A \in N_C$ $\neg C$?var rdf:type A. {?var ?p ?o} UNION {?s ?p ?var}. FILTER NOT EXISTS{7(C,?var)}

- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [Bin et al., 2016]

Class Expression	Graph Pattern $\mathfrak{p} = au(\mathcal{C}_i, 2$ var)
$A \in N_C$ $\neg C$	<pre>?var rdf:type A. {?var ?p ?o} UNION {?s ?p ?var}. FULTER NOT FYISTS {z(C 2var)}</pre>
$C_1 \sqcap \ldots \sqcap C_n$	$\{\tau(C_1, ?var) \dots \tau(C_n, ?var)\}$

- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [Bin et al., 2016]

Class Expression	Graph Pattern $\mathfrak{p} = au(\mathcal{C}_i, \mathtt{?var})$
$A \in N_C$?var rdf:type A.
¬C	{?var ?p ?o} UNION {?s ?p ?var}. FILTER NOT EXISTS { $\tau(C, ?var)$ }
$C_1 \sqcap \ldots \sqcap C_n$	$\{\tau(C_1, ?var) \dots \tau(C_n, ?var)\}$
$C_1 \sqcup \ldots \sqcup C_n$	$\{\tau(C_1, 2 \text{var})\}$ UNION UNION $\{\tau(C_n, 2 \text{var})\}$

- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [Bin et al., 2016]

Class Expression	Graph Pattern $\mathfrak{p} = au(\mathcal{C}_i, 2 extsf{var})$
$A \in N_C$?var rdf:type A.
$\neg C$	{?var ?p ?o} UNION {?s ?p ?var}.
	FILTER NOT EXISTS $\{\tau(\mathbf{C}, 2 \mathrm{var})\}$
$C_1 \sqcap \ldots \sqcap C_n$	$\{\tau(C_1, ?var) \dots \tau(C_n, ?var)\}$
$C_1 \sqcup \ldots \sqcup C_n$	$\{ au(C_1, ?var)\}$ UNION UNION $\{ au(C_n, ?var)\}$
∃ <i>r</i> . <i>C</i>	{?var r ?s. τ (C,?s)}

- Assume closed world and fully materialized knowledge graph
- Retrieval in ALC can be realized by representing concepts as SPARQL queries [Bin et al., 2016]

Class Expression	Graph Pattern $\mathfrak{p}= au(\mathcal{C}_i, ? extsf{var})$				
$A \in N_C$?var rdf:type A.				
$\neg C$	{?var ?p ?o} UNION {?s ?p ?var}.				
	FILTER NOT EXISTS $\{ au(\mathcal{C}, ?var)\}$				
$C_1 \sqcap \ldots \sqcap C_n$	$\{\tau(C_1, ?var) \dots \tau(C_n, ?var)\}$				
$C_1 \sqcup \ldots \sqcup C_n$	$\{\tau(C_1, 2 \text{var})\}$ UNION UNION $\{\tau(C_n, 2 \text{var})\}$				
∃ <i>r</i> .C	{?var r ?s. $\tau(C, ?s)$ }				
∀ <i>r</i> . <i>C</i>	{ ?var r ?s0.				
	{ SELECT ?var (count(?s1) AS ?cnt1)				
	WHERE { ?var r ?s1. $\tau(C, ?s1)$ }				
	GROUP BY ?var }				
	<pre>{ SELECT ?var (count(?s2) AS ?cnt2)</pre>				
	WHERE { ?var r ?s2 .}				
	GROUP BY ?var }				
	FILTER (?cnt1 = ?cnt2) }				

Representing Concepts as SPARQL Storage Solutions

- Important difference are indexing data structures
- ► Typical indexes include
 - Resource index, e.g., a hash table
 - ► Triple index, e.g., a B⁺ tree

TENTRIS: Idea

Idea [Bigerl et al., 2020]

- Exploit tensor representation to accelerate querying
- Devise data structure to accommodate rapid querying

Ngonga: Explainable ML on KGs

From RDF to Tensors

From RDF to Tensors

:e1 :e2 dbr:Unicorn :e3 :e4	term	id(term)
	·e1	1
foaf:knows	foaf:knows	2
rdf:type	:e2	3
	:e3	4
	:e4	5
	rdf:type	6
	dbr:Unicorn	7
	unbound	8

From RDF to Tensors

:e1 :e3	7	e2	dbr:U	nicorn		term	id(term)
		<u> </u>				:e1	1
	📩 foa	f:knows				foaf:knows	2
	rdt:	type				:e2	3
						:e3	4
		id(n)	id(a)			:e4	5
	1a(s)	<i>la</i> (p)	10(0)			rdf:type	6
	1	2	3			dbr:Unicorn	7
	1	2	4			unbound	8
	3	2	4		/		
	3	2	5				
	4	2	3				
	4	2	5				
	3	6	7				
	5	6	7				

Ngonga: Explainable ML on KGs

From RDF to Tensors

TENTRIS: Data Model

• Consider order-*n* tensors $T : \mathbf{K} = \mathbf{K}_1 \times \cdots \times \mathbf{K}_n \rightarrow V$

- Consider order-*n* tensors $T : \mathbf{K} = \mathbf{K}_1 \times \cdots \times \mathbf{K}_n \rightarrow V$
 - $\blacktriangleright \ \mathbf{K}_1 = \cdots = \mathbf{K}_n \subset \mathbb{N}$

- Consider order-*n* tensors $T : \mathbf{K} = \mathbf{K}_1 \times \cdots \times \mathbf{K}_n \rightarrow V$
 - $\blacktriangleright \ \mathbf{K}_1 = \cdots = \mathbf{K}_n \subset \mathbb{N}$
 - $\blacktriangleright \ \ \mathbb B$ or $\mathbb N$ as co-domain

- Consider order-*n* tensors $T : \mathbf{K} = \mathbf{K}_1 \times \cdots \times \mathbf{K}_n \rightarrow V$
 - $\blacktriangleright \ \mathbf{K}_1 = \dots = \mathbf{K}_n \subset \mathbb{N}$
 - $\blacktriangleright \ \ \mathbb B$ or $\mathbb N$ as co-domain
- $\blacktriangleright \ \mathbf{k} \in \mathbf{K} \text{ is a key with key parts } \langle \mathbf{k}_1, \dots, \mathbf{k}_n \rangle$
- Values v in a tensor are accessed in array style, e.g., $T[\mathbf{k}] = v$

TENTRIS: Data Model

► $\mathbf{K} = \mathbb{N}^3$

 \blacktriangleright V = \mathbb{B}

 $\blacktriangleright T[\langle 3, 6, 7 \rangle] = 1$

 $\blacktriangleright T[\langle 3, 6, 3 \rangle] = 0$

TENTRIS: Data Model

Slicing selects portion of T, e.g., $T^{(1)} := T[1, 2, :]$ is order-1 tensor

- Slicing selects portion of T, e.g., $T^{(1)} := T[1, 2, :]$ is order-1 tensor
- ► For our example, *T*[1, 2, :] = [0, 0, 1, 1, 0, 0, 0, 0]

- Slicing selects portion of T, e.g., $T^{(1)} := T[1, 2, :]$ is order-1 tensor
- ► For our example, *T*[1, 2, :] = [0, 0, 1, 1, 0, 0, 0, 0]
- Slices can be joined via Einstein summation [Barr, 1989]

TENTRIS-Einstein Summation

1 SELECT ?f WHERE {
2 :el foaf:knows ?f.
3 ?f foaf:knows ?u.
4 ?u rdf:type dbr:Unicorn
5 }

TENTRIS-Einstein Summation

Ngonga: Explainable ML on KGs

31/78

TENTRIS-Einstein Summation

TENTRIS: Querying

► Triple pattern is mapped to

$$\mathbf{k}_i^{(Q)} := \left\{ egin{array}{cc} :, & ext{if } Q_i \in U, \ id(Q_i), & ext{otherwise.} \end{array}
ight.$$

Representing Concepts as SPARQL TENTRIS: Querying

► Triple pattern is mapped to

$$\mathbf{k}_i^{(Q)} := \left\{ \begin{array}{ll} :, & ext{if } Q_i \in U, \\ id(Q_i), & ext{otherwise.} \end{array}
ight.$$

• BGP
$$B = \{B^{(1)}, ..., B^{(r)}\}$$
 is given by

$$T'_{\langle l \in U \rangle} \leftarrow \bigvee_{i} T[\mathbf{k}^{B^{(i)}}]_{\langle l \in B^{(i)} | l \in U \rangle}$$

Ngonga: Explainable ML on KGs

Representing Concepts as SPARQL TENTRIS: Querying

► Triple pattern is mapped to

$$\mathbf{k}_i^{(Q)} := \left\{ \begin{array}{ll} :, & ext{if } Q_i \in U, \\ id(Q_i), & ext{otherwise.} \end{array}
ight.$$

• BGP
$$B = \{B^{(1)}, ..., B^{(r)}\}$$
 is given by

$$T'_{\langle l \in U \rangle} \leftarrow \bigvee_{i} T[\mathbf{k}^{B^{(i)}}]_{\langle l \in B^{(i)} | l \in U \rangle}$$

• The projection $\Pi_{U'}(B(g))$ with $U' \subseteq U$ is given by

$$T''_{\langle l \in U' \rangle} \leftarrow \bigotimes_{i} T[\mathbf{k}^{B^{(i)}}]_{\langle l \in B^{(i)} | l \in U \rangle}$$

Representing Concepts as SPARQL TENTRIS: Hypertrie

Query for any tensor slice efficiently

Allow for efficient querying

TENTRIS: Hypertrie

- Query for any tensor slice efficiently
- Storage bound is reduced from O(d! ⋅ d ⋅ z(h)) for all collation orders to O(2^{d-1} ⋅ d ⋅ z(h))

TENTRIS: Evaluation – Setup

- Evaluation via HTTP and CLI
- Timeout = 180 s
- Benchmark runtime = 60 min
- Comparison with
 - Virtuoso 7.2.5,
 - Fuseki 3.5.0,
 - Blazegraph v2.0, and
 - GraphDB Lite v.8.3.1

TENTRIS: Evaluation – Setup

- Evaluation via HTTP and CLI
- Timeout = 180 s
- Benchmark runtime = 60 min
- Comparison with
 - Virtuoso 7.2.5,
 - Fuseki 3.5.0,
 - Blazegraph v2.0, and
 - GraphDB Lite v.8.3.1

	B
C	3

Dataset	#Q	#TP	#R	#D	avg JVD
SWDF	203	1.74 (1 - 9)	5.5 k (1 - 304 k)	124 (61%)	0.75 (0 - 4)
DBpedia	557	1.84 (1 - 14)	13.2 k (0 - 843 k)	222 (40%)	1.19 (0 - 4)
WatDiv	45	6.51 (2 - 10)	3.7 k (0 - 34 k)	2 (4%)	2.61 (2 - 9)

Representing Concepts as SPARQL TENTRIS: Evaluation – SWDF

Representing Concepts as SPARQL TENTRIS: Evaluation – DBpedia

TENTRIS: Evaluation – WatDiv

TENTRIS: Evaluation – Speedup

Learning problem

Challenges

✓ Retrieval is expensive \Rightarrow Represent concepts in SPARQL

Learning problem

Challenges

 \checkmark Retrieval is expensive \Rightarrow Represent concepts in SPARQL

- ► Quality functions are often myopic ⇒ Exploit representation as embeddings
- ► Candidate generation is expensive ⇒ Exploit subgraphs for priming
- ► Search space is large ⇒ Embed concept representations

Section 5

Improving Quality Functions

Ngonga: Explainable ML on KGs

41/78

Improving Quality Functions Refinement Operators

- ► Implement informed search in space S of all concepts with partial ordering ⊑
- Refinement operator $\rho : S \to 2^S$ with
 - $\forall x \in \rho(s) : x \sqsubseteq s \text{ (downward)}$
 - $\forall x \in \rho(s) : s \sqsubseteq x \text{ (upward)}$

Improving Quality Functions Refinement Operators

- ► Implement informed search in space S of all concepts with partial ordering ⊑
- Refinement operator $\rho : S \rightarrow 2^S$ with

Improving Quality Functions Quality Functions – OCEL

- Let R(C) be the set of instances of C
- ► Let *C*′ be the parent concept of *C* in the search tree

Improving Quality Functions Quality Functions – OCEL

- Let R(C) be the set of instances of C
- ► Let *C*′ be the parent concept of *C* in the search tree
- ► Accuracy and accuracy gain of a concept C are defined as

$$\operatorname{acc}(\mathcal{C}) = 1 - rac{|\mathcal{E}^+ \setminus \mathcal{R}(\mathcal{C})| + |\mathcal{R}(\mathcal{C}) \cap \mathcal{E}^-|}{|\mathcal{E}|}$$
 $\operatorname{acc_gain}(\mathcal{C}) = \operatorname{acc}(\mathcal{C}) - \operatorname{acc}(\mathcal{C}')$

Improving Quality Functions Quality Functions – OCEL

- ► Let *R*(*C*) be the set of instances of *C*
- ► Let *C*′ be the parent concept of *C* in the search tree
- ► Accuracy and accuracy gain of a concept C are defined as

$$\operatorname{acc}(\mathcal{C}) = 1 - rac{|E^+ \setminus R(\mathcal{C})| + |R(\mathcal{C}) \cap E^-|}{|E|}$$
 $\operatorname{acc_gain}(\mathcal{C}) = \operatorname{acc}(\mathcal{C}) - \operatorname{acc}(\mathcal{C}')$

► The score is given by

$$\operatorname{score}(\mathcal{C}) = \operatorname{acc}(\mathcal{C}) + \alpha \cdot \operatorname{acc}_{\operatorname{gain}}(\mathcal{C}) - \beta \cdot |\mathcal{C}| \quad (\alpha, \beta \ge \mathbf{0}),$$

where $\alpha = 0.5$ and $\beta = 0.02$ are typical default values.

Quality Functions – CELOE

► Accuracy metric acc_c for CELOE:

$$\operatorname{acc}_{c}(C,t) = \frac{1}{t+1} \cdot \left(t \cdot \frac{|E^{+} \cap R(C)|}{|E^{+}|} + \sqrt{\frac{|E^{+} \cap R(C)|}{|R(C)|}} \right)$$
$$\operatorname{acc_gain}_{c}(C) = \operatorname{acc}_{c}(C,t) - \operatorname{acc}_{c}(C',t)$$

Quality Functions – CELOE

► Accuracy metric acc_c for CELOE:

$$\operatorname{acc}_{c}(C,t) = \frac{1}{t+1} \cdot \left(t \cdot \frac{|E^{+} \cap R(C)|}{|E^{+}|} + \sqrt{\frac{|E^{+} \cap R(C)|}{|R(C)|}} \right)$$
$$\operatorname{acc_gain}_{c}(C) = \operatorname{acc}_{c}(C,t) - \operatorname{acc}_{c}(C',t)$$

► score(C) = $\operatorname{acc}_{c}(C, t) + \alpha \cdot \operatorname{acc}_{gain}_{c}(C) - \beta \cdot |C|$ ($\alpha, \beta \ge 0$) where typical values are $\alpha = 0.3$ and $\beta = 0.05$.

Quality Functions – CELOE

► Accuracy metric acc_c for CELOE:

$$\operatorname{acc}_{c}(C,t) = \frac{1}{t+1} \cdot \left(t \cdot \frac{|E^{+} \cap R(C)|}{|E^{+}|} + \sqrt{\frac{|E^{+} \cap R(C)|}{|R(C)|}} \right)$$
$$\operatorname{acc_gain}_{c}(C) = \operatorname{acc}_{c}(C,t) - \operatorname{acc}_{c}(C',t)$$

► score(C) = $\operatorname{acc}_{c}(C, t) + \alpha \cdot \operatorname{acc}_{gain}_{c}(C) - \beta \cdot |C|$ ($\alpha, \beta \ge 0$) where typical values are $\alpha = 0.3$ and $\beta = 0.05$.

Problem: Myopia

Current metrics do not consider future accuracy of concepts

Quality Functions – CELOE

► Accuracy metric acc_c for CELOE:

$$\operatorname{acc}_{c}(C,t) = \frac{1}{t+1} \cdot \left(t \cdot \frac{|E^{+} \cap R(C)|}{|E^{+}|} + \sqrt{\frac{|E^{+} \cap R(C)|}{|R(C)|}} \right)$$
$$\operatorname{acc_gain}_{c}(C) = \operatorname{acc}_{c}(C,t) - \operatorname{acc}_{c}(C',t)$$

► score(C) =
$$\operatorname{acc}_{c}(C, t) + \alpha \cdot \operatorname{acc}_{gain}_{c}(C) - \beta \cdot |C|$$
 ($\alpha, \beta \ge 0$)
where typical values are $\alpha = 0.3$ and $\beta = 0.05$.

Problem: Myopia

- Current metrics do not consider future accuracy of concepts
- Optimize for cumulative discounted future rewards [Demir and Ngonga Ngomo, 2021]

Reinforcement Learning

Reinforcement Learning

 $S_t = \text{Concept } C \\ R_t = \begin{cases} 1 & \text{if } acc(C) = 1 \\ 0 & \text{else} \end{cases}$

► A_t = Transition from concept C to some concept D

Reinforcement Learning – Q Function

 $G_t = \sum_{i=0}^n \gamma^i R_{t+i}$

Reinforcement Learning – Q Function

Maximize

$$G_t = \sum_{i=0}^n \gamma^i R_{t+i}$$

• Optimize state-action value function $Q_{\pi} : S \times A \rightarrow \mathbb{R}$ with

$$Q_{\pi}(\mathbf{s}, \mathbf{a}) = \mathbb{E}_{\pi} \left[G_t \mid S_t = \mathbf{s}, A_t = \mathbf{a} \right]$$

Reinforcement Learning – Q Function

Maximize

$$G_t = \sum_{i=0}^n \gamma^i R_{t+i}$$

• Optimize state-action value function $Q_{\pi} : S \times A \rightarrow \mathbb{R}$ with

$$Q_{\pi}(\mathbf{s}, \mathbf{a}) = \mathbb{E}_{\pi} \left[G_t \mid S_t = \mathbf{s}, A_t = \mathbf{a} \right]$$

• Observation: Infinite number of states as search space is infinite

Reinforcement Learning – Q Function

Maximize

$$G_t = \sum_{i=0}^n \gamma^i R_{t+i}$$

• Optimize state-action value function $Q_{\pi} : S \times A \rightarrow \mathbb{R}$ with

$$Q_{\pi}(\mathbf{s}, \mathbf{a}) = \mathbb{E}_{\pi} \left[G_t \mid S_t = \mathbf{s}, A_t = \mathbf{a}
ight]$$

- Observation: Infinite number of states as search space is infinite
- ► Apply deep Q learning with target network [Mnih et al., 2015]

$$\mathcal{L}(\Theta_i) = \mathbb{E}_{(s,a,R,s') \sim U(\mathcal{D})} \left[\left(R + \gamma \max_{\mathbf{a}' \in \mathcal{A}(\mathbf{s}')} Q(\mathbf{s}', \mathbf{a}'; \Theta_i^-) - Q(\mathbf{s}, \mathbf{a}; \Theta_i) \right)^2 \right]$$

Ngonga: Explainable ML on KGs

Reinforcement Learning – DRILL

• Convolutional deep Q-Network with $\Theta = [\omega, \mathbf{W}, \mathbf{H}]$

 $\varphi([\mathsf{s},\mathsf{s}',\mathbf{e}_+,\mathbf{e}_-];\Theta) = \textit{ReLU}\Big(\textit{vec}(\textit{ReLU}\big[\Psi([\mathsf{s},\mathsf{s}',\mathbf{e}_+,\mathbf{e}_-])*\omega\big])\cdot \mathbf{W}\Big)\cdot \mathbf{H}$

Source: [Mao et al., 2016]

Assumptions

- Resources and properties are vectors
- If $(s, p, o) \in E$, then $\vec{s} + \vec{p} = \vec{o}$

Assumptions

- Resources and properties are vectors
- If $(s, p, o) \in E$, then $\vec{s} + \vec{p} = \vec{o}$
- Translates to loss

$$L_{pos} = \sum_{(s,p,o)\in E} d(\vec{s} + \vec{p}, \vec{o})$$

Assumptions

- Resources and properties are vectors
- If $(s, p, o) \in E$, then $\vec{s} + \vec{p} = \vec{o}$
- Translates to loss

$$L_{pos} = \sum_{(s,p,o)\in E} d(\vec{s} + \vec{p}, \vec{o})$$

 Problem 1: Loss function converges to trivial solution for vectors of arbitrary length

Assumptions

- Resources and properties are vectors
- If $(s, p, o) \in E$, then $\vec{s} + \vec{p} = \vec{o}$
- Translates to loss

$$L_{pos} = \sum_{(s,p,o)\in E} d(\vec{s} + \vec{p}, \vec{o})$$

- Problem 1: Loss function converges to trivial solution for vectors of arbitrary length
- Solution: Normalize vectors for s and o
- Loss is now

$$L_{ extsf{pos}} = \sum_{(s, p, o) \in E} d(ec{s} + ec{p}, ec{o}) extsf{ with } ||ec{s}|| = ||ec{o}|| = 1$$

Improving Quality Functions TransE

- Problem 1 not solved yet but
- Problem 2: No use of negative information

Improving Quality Functions TransE

- Problem 1 not solved yet but
- Problem 2: No use of negative information
- Solution: Add negative information and margin $\gamma \in \mathbb{R}^+$
- Loss is now

$$L = \sum_{(s,p,o)\in E} \sum_{(s',p,o')\in S'(s,p,o)} [\gamma + d(\vec{s}+\vec{p},\vec{o}) - d(\vec{s'}+\vec{p},\vec{o'})]_+$$

where

▶ $S'(s,p,o) = sample(\{(s',p,o)|s' \in V\} \cup \{(s,p,o')|o' \in V\}, 1)$ ▶ $S'(s,p,o) \cap E = \emptyset$ ▶ $[x]_+ = \max\{0,x\}$

Improving Quality Functions TransE

• Input: Training set S, margin γ , embedding dimension k

► Init

- $\vec{p} = randomUniformSample(-6/\sqrt{k}, 6/\sqrt{k})$ for all p
- $\blacktriangleright \vec{p} = \vec{p} / ||\vec{p}||$
- ▶ $\vec{x} = randomUniformSample(-6/\sqrt{k}, 6/\sqrt{k})$ for all $x \in V$

TransE

lnput: Training set S, margin γ , embedding dimension k

Init

- $\blacktriangleright \vec{p} = randomUniformSample(-6/\sqrt{k}, 6/\sqrt{k})$ for all p
- $||\vec{a}|| \langle \vec{a} = \vec{a} |$
- $\vec{x} = randomUniformSample(-6/\sqrt{k}, 6/\sqrt{k})$ for all $x \in V$
- Loop until convergence
 - $\blacktriangleright \vec{x} = \vec{x} / ||\vec{x}||$ for all $x \in V$
 - S_{batch} = sample(S, b) // get mini-batch of size b from S
 - $T_{batch} = T_{batch} \cup \{((s, p, o), sample(S'(s, p, o), 1))\}$ for all $(s, p, o) \in S_{hatch}$
 - Update embeddings w.r.t.

$$\sum_{((s,p,o),(s',p,o'))\in \mathcal{T}_{batch}} \nabla [\gamma + d(\vec{s} + \vec{p}, \vec{o}) - d(\vec{s'} + \vec{p}, \vec{o'})]_{+}$$

TransE

lnput: Training set S, margin γ , embedding dimension k

Init

- $\blacktriangleright \vec{p} = randomUniformSample(-6/\sqrt{k}, 6/\sqrt{k})$ for all p
- $||\vec{a}|| \langle \vec{a} = \vec{a} |$
- $\vec{x} = randomUniformSample(-6/\sqrt{k}, 6/\sqrt{k})$ for all $x \in V$
- Loop until convergence
 - ▶ $\vec{x} = \vec{x}/||\vec{x}||$ for all $x \in V$
 - S_{batch} = sample(S, b) // get mini-batch of size b from S
 - $T_{batch} = T_{batch} \cup \{((s, p, o), sample(S'(s, p, o), 1))\}$ for all $(s, p, o) \in S_{hatch}$
 - Update embeddings w.r.t.

$$\sum_{((s,p,o),(s',p,o'))\in T_{batch}} \nabla [\gamma + d(\vec{s} + \vec{p}, \vec{o}) - d(\vec{s'} + \vec{p}, \vec{o'})]_+$$

- Note: Learning via balanced mini-batches with random negative samples
- Note: Derivative only for portions of the loss > 0

Ngonga: Explainable ML on KGs

- Multiplication rules
 - $x = x_0 + ix_1 + jx_2 + kx_3$ (with $i^2 = j^2 = k^2 = ijk = -1$)
 - ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j (loss of commutativity)

- Multiplication rules
 - $x = x_0 + ix_1 + jx_2 + kx_3$ (with $i^2 = j^2 = k^2 = ijk = -1$)
 - ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j (loss of commutativity)
- ► Can define embeddings in this space: QuatE
 - ► $\vec{s}, \vec{p}, \vec{o} \in \mathbb{H}^k$
 - $\vec{p} = \vec{p} / ||\vec{p}||$ (normalized vector \vec{p})
 - Scoring function $\varphi(s, p, o) = (\vec{s} \otimes \vec{p}^{\triangleleft}) \cdot \vec{o}$, where

- Multiplication rules
 - $x = x_0 + ix_1 + jx_2 + kx_3$ (with $i^2 = j^2 = k^2 = ijk = -1$)
 - ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j (loss of commutativity)
- ► Can define embeddings in this space: QuatE
 - ► $\vec{s}, \vec{p}, \vec{o} \in \mathbb{H}^k$
 - $\vec{p} = \vec{p} / ||\vec{p}||$ (normalized vector \vec{p})
 - Scoring function $\varphi(s, p, o) = (\vec{s} \otimes \vec{p}^{\triangleleft}) \cdot \vec{o}$, where
 - \otimes is the Hamiltonian product ($\mathbb{H} \times \mathbb{H} \to \mathbb{H}$)
 - is the quaternion inner product ($\mathbb{H} \times \mathbb{H} \to \mathbb{R}$)

- Multiplication rules
 - $x = x_0 + ix_1 + jx_2 + kx_3$ (with $i^2 = j^2 = k^2 = ijk = -1$)
 - ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j (loss of commutativity)
- ► Can define embeddings in this space: QuatE
 - ► $\vec{s}, \vec{p}, \vec{o} \in \mathbb{H}^k$
 - $\vec{p}^{\triangleleft} = \vec{p}/||\vec{p}||$ (normalized vector \vec{p})
 - Scoring function $\varphi(s, p, o) = (\vec{s} \otimes \vec{p}^{\triangleleft}) \cdot \vec{o}$, where
 - \otimes is the Hamiltonian product ($\mathbb{H} \times \mathbb{H} \to \mathbb{H}$)
 - is the quaternion inner product ($\mathbb{H} \times \mathbb{H} \to \mathbb{R}$)
 - ► Loss function over training data Γ with $Y_{spo} \in \{-1, +1\}$ is given by $\min_{\vec{s}, \vec{p}, \vec{o}} \sum_{(s, p, o) \in \Gamma} \log(1 + exp(-Y_{spo}\varphi(s, p, o)))$

- Multiplication rules
 - $x = x_0 + ix_1 + jx_2 + kx_3$ (with $i^2 = j^2 = k^2 = ijk = -1$)
 - ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j (loss of commutativity)
- ► Can define embeddings in this space: QuatE
 - ► $\vec{s}, \vec{p}, \vec{o} \in \mathbb{H}^k$
 - $\vec{p}^{\triangleleft} = \vec{p}/||\vec{p}||$ (normalized vector \vec{p})
 - Scoring function $\varphi(s, p, o) = (\vec{s} \otimes \vec{p}^{\triangleleft}) \cdot \vec{o}$, where
 - \otimes is the Hamiltonian product ($\mathbb{H} \times \mathbb{H} \to \mathbb{H}$)
 - is the quaternion inner product ($\mathbb{H} \times \mathbb{H} \to \mathbb{R}$)
 - ► Loss function over training data Γ with $Y_{spo} \in \{-1, +1\}$ is given by $\min_{\vec{s}, \vec{p}, \vec{o}} \sum_{(s, p, o) \in \Gamma} \log(1 + exp(-Y_{spo}\varphi(s, p, o)))$
- Similar construction for octonions

Unsupervised Learning – Training Data

- ► Follow refinement path at random
- ► Select concept C
- Set $E^+ \subseteq R(C)$ and $E^- \cap R(C) = \emptyset$

Improving Quality Functions Evaluation

- Used Family und BioPax datasets
- ► Evaluation on 114 learning problems

Approaches	F1	Acc	Runtime	# Exp.
CELOE	$.995\pm0.03$	$.993 \pm 0.04$	7.5 ± 1.1	$\textbf{33.5} \pm \textbf{129.3}$
OCEL	*	1.00 ± 0.00	11.0 ± 1.4	$\textbf{2271.6} \pm \textbf{1269.2}$
ELTL	$.990\pm0.06$	$.984 \pm 0.09$	8.1 ± 1.6	*
DRILL	1.00 ± 0.00	1.00 ± 0.00	1.1 ± 0.5	$\textbf{9.88} \pm \textbf{38.5}$

Challenges

✓ Retrieval is expensive ⇒ Represent concepts in SPARQL
✓ Quality functions are often myopic ⇒ Exploit representation as embeddings

Challenges

- \checkmark Retrieval is expensive \Rightarrow Represent concepts in SPARQL
- ✓ Quality functions are often myopic ⇒ Exploit representation as embeddings
- ► Candidate generation is expensive ⇒ Exploit subgraphs for priming
- ► Search space is large ⇒ Embed concept representations

Section 6

Learning with Priming

Ngonga: Explainable ML on KGs

55/78

EVOLEARNER - Idea

▶ Represent concepts as trees, e.g., (Female ⊔ Parent) □ ∃married.Male

EvoLearner – Idea

- ▶ Represent concepts as trees, e.g., (Female ⊔ Parent) □ ∃married.Male
- ► Learn in evolutionary fashion using genetic programming
- Exploit priming effect (remember the green apple)
- Intuition: An individual is an overlap several concepts [Heindorf et al., 2022]

Ngonga: Explainable ML on KGs

EvoLearner – Data Properties

- ► Given a data property *d* from the knowledge base *K* and a set *E* of positive and negative examples
- We precompute up to k splits of the form $d \le \bar{v}_i$ per data property
- ► Splits are computed to maximize information gain:

$$IG(E,\bar{v}_i) = H(E) - H(E|\bar{v}_i) = H(E) - \left(\frac{|E_L|}{|E|}H(E_L) + \frac{|E_R|}{|E|}H(E_R)\right)$$

Evolearner – Training

EVOLEARNER - Evaluation

Learn. Problem	EvoLearner (ours)	DL-Learner (CELOE)	DL-Learner (OCEL)	Aleph	SPaCEL
Carcinogenesis	$\textbf{0.70} \pm \textbf{0.12}$	$\textbf{0.71} \pm \textbf{0.01}$	no results	$\textbf{0.46} \pm \textbf{0.12}$	$\textbf{0.60} \pm \textbf{0.08}$
Family	1.00 ± 0.01	$\textbf{0.98} \pm \textbf{0.05}$	$\textbf{1.00} \pm \textbf{0.00}$	_	$\textbf{0.97} \pm \textbf{0.11}$
Hepatitis	$\textbf{0.79} \pm \textbf{0.08}$	$\textbf{0.61} \pm \textbf{0.03}$	no results	$\textbf{0.38} \pm \textbf{0.12}$	no results
Lymphography	$\textbf{0.84} \pm \textbf{0.09}$	$\textbf{0.78} \pm \textbf{0.10}$	$\textbf{0.85} \pm \textbf{0.10}$	$\textbf{0.84} \pm \textbf{0.09}$	$\textbf{0.75} \pm \textbf{0.13}$
Mammographic	$\textbf{0.81} \pm \textbf{0.06}$	$\textbf{0.64} \pm \textbf{0.01}$	$\textbf{0.78} \pm \textbf{0.08}$	$\textbf{0.48} \pm \textbf{0.08}$	$\textbf{0.64} \pm \textbf{0.06}$
Mutagenesis	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{0.93} \pm \textbf{0.14}$	timeout	$\textbf{0.43} \pm \textbf{0.47}$	$\textbf{1.00} \pm \textbf{0.00}$
NCTRER	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{0.74} \pm \textbf{0.01}$	$\textbf{0.94} \pm \textbf{0.06}$	$\textbf{0.71} \pm \textbf{0.18}$	$\textbf{1.00} \pm \textbf{0.00}$
Premier League	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{0.99} \pm \textbf{0.04}$	$\textbf{0.81} \pm \textbf{0.13}$	$\textbf{0.94} \pm \textbf{0.11}$	$\textbf{0.98} \pm \textbf{0.04}$
Pyrimidine	$\textbf{0.91} \pm \textbf{0.14}$	$\textbf{0.84} \pm \textbf{0.15}$	$\textbf{0.84} \pm \textbf{0.22}$	$\textbf{0.90} \pm \textbf{0.32}$	$\textbf{0.86} \pm \textbf{0.29}$

EVOLEARNER - Ablation Study

Learning Problem	EvoLearner (ours)	Without Rand. Walk Init.	Without Data Properties	Without Both
Carcinogenesis	$\textbf{0.70} \pm \textbf{0.12}$	$\textbf{0.60} \pm \textbf{0.21}$	$\textbf{0.63} \pm \textbf{0.13}$	$\textbf{0.62} \pm \textbf{0.13}$
Family	1.00 ± 0.01	$\textbf{0.87} \pm \textbf{0.13}$	_	$\textbf{0.86} \pm \textbf{0.14}$
Hepatitis	$\textbf{0.79} \pm \textbf{0.08}$	$\textbf{0.67} \pm \textbf{0.15}$	$\textbf{0.46} \pm \textbf{0.14}$	$\textbf{0.47} \pm \textbf{0.13}$
Lymphography	$\textbf{0.84} \pm \textbf{0.09}$	$\textbf{0.83} \pm \textbf{0.11}$	-	$\textbf{0.83} \pm \textbf{0.09}$
Mammographic	$\textbf{0.81} \pm \textbf{0.06}$	$\textbf{0.78} \pm \textbf{0.08}$	$\textbf{0.77} \pm \textbf{0.07}$	$\textbf{0.75} \pm \textbf{0.06}$
Mutagenesis	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{0.44} \pm \textbf{0.48}$	$\textbf{0.50} \pm \textbf{0.51}$
NCTRER	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{0.74} \pm \textbf{0.05}$	$\textbf{0.75} \pm \textbf{0.05}$
Premier League	$\textbf{1.00} \pm \textbf{0.00}$	$\textbf{0.98} \pm \textbf{0.04}$	$\textbf{0.50} \pm \textbf{0.23}$	$\textbf{0.50} \pm \textbf{0.22}$
Pyrimidine	$\textbf{0.91} \pm \textbf{0.14}$	$\textbf{0.83} \pm \textbf{0.22}$	$\textbf{0.67} \pm \textbf{0.00}$	$\textbf{0.67} \pm \textbf{0.00}$

- \checkmark Retrieval is expensive \Rightarrow Represent concepts in SPARQL
- ✓ Quality functions are often myopic ⇒ Exploit representation as embeddings

- \checkmark Retrieval is expensive \Rightarrow Represent concepts in SPARQL
- ✓ Quality functions are often myopic ⇒ Exploit representation as embeddings
- \checkmark Candidate generation is expensive \Rightarrow Exploit subgraphs for priming
- ► Search space is large ⇒ Represent concepts as embeddings

- \checkmark Retrieval is expensive \Rightarrow Represent concepts in SPARQL
- ✓ Quality functions are often myopic ⇒ Exploit representation as embeddings
- \checkmark Candidate generation is expensive \Rightarrow Exploit subgraphs for priming
- Search space is large ⇒ Represent concepts as embeddings [Kouagou et al., 2022]

Section 7

CLIP

Ngonga: Explainable ML on KGs

63/78

Concept Lengths

• $length(A) = length(\top) = length(\bot) = 1$ (A atomic concept)

Concept Lengths

- $length(A) = length(\top) = length(\bot) = 1$ (A atomic concept)
- $length(\neg C) = 1 + length(C)$, for all concepts C

Concept Lengths

- $length(A) = length(\top) = length(\bot) = 1$ (A atomic concept)
- $length(\neg C) = 1 + length(C)$, for all concepts C
- ► $length(\exists r.C) = length(\forall r.C) = 2 + length(C)$, for all concepts C

Concept Lengths

- $length(A) = length(\top) = length(\bot) = 1$ (A atomic concept)
- $length(\neg C) = 1 + length(C)$, for all concepts C
- ► $length(\exists r.C) = length(\forall r.C) = 2 + length(C)$, for all concepts C
- Iength(C ⊔ D) = length(C ⊓ D) = 1 + length(C) + length(D), for all concepts C and D.

Approach

Approach

Learn concept lengths

Ngonga: Explainable ML on KGs

Approach

- Learn concept lengths
- Predict target concept length and discard longer refinements

Concept Length Prediction

- ► Input: positive and negative examples
- Output: length of the target concept

Concept Learning

Male $\square \exists$ hasParent.(\exists hasChild.Female)

CLIP Training

68/78

CLIP Validation

CLIP

Network Architecture

	Carcinogenesis					Mutagenesis				
Metric	LSTM	GRU	CNN	MLP	RM	LSTM	GRU	CNN	MLP	RM
Train. Acc.	0.89	0.96	0.97	0.80	0.48	0.83	0.97	0.98	0.68	0.33
Val. Acc.	0.76	0.93	0.82	0.77	0.48	0.70	0.82	0.71	0.65	0.35
Test Acc.	0.92	0.95	0.84	0.80	0.49	0.78	0.85	0.70	0.68	0.33
Test F1	0.88	0.92	0.71	0.59	0.33	0.76	0.85	0.70	0.67	0.32
								/icodi		
		Se	mantic I	Bible			١	/icodi		
Metric	LSTM	Se GRU	mantic I CNN	Bible MLP	RM	LSTM	۱ GRU	/icodi CNN	MLP	RM
Metric Train. Acc.	LSTM	Se GRU 0.93	mantic I CNN 0.99	Bible MLP 0.68	RM 0.33	LSTM 0.73	GRU 0.81	/icodi CNN 0.83	MLP 0.66	RM 0.28
Metric Train. Acc. Val. Acc.	LSTM 0.85 0.49	Se GRU 0.93 0.58	mantic I CNN 0.99 0.44	Bible MLP 0.68 0.46	RM 0.33 0.26	LSTM 0.73 0.55	GRU 0.81 0.77	/icodi CNN 0.83 0.70	MLP 0.66 0.64	RM 0.28 0.30
Metric Train. Acc. Val. Acc. Test Acc.	LSTM 0.85 0.49 0.52	Se GRU 0.93 0.58 0.53	mantic I CNN 0.99 0.44 0.37	Bible MLP 0.68 0.46 0.40	RM 0.33 0.26 0.25	LSTM 0.73 0.55 0.66	GRU 0.81 0.77 0.80	/icodi CNN 0.83 0.70 0.69	MLP 0.66 0.64 0.66	RM 0.28 0.30 0.29

Comparison with SOTA

		Carcinogenesis		
Metric	CELOE	OCEL	ELTL	CLIP
Acc. ↑	$\textbf{0.78} \pm \textbf{0.27}$	$\textbf{0.89} \pm \textbf{0.31}$	$\textbf{0.58} \pm \textbf{0.46}$	0.99 ± 0.00
F1 ↑	$\textbf{0.62} \pm \textbf{0.46}$	_	$\textbf{0.51} \pm \textbf{0.47}$	$\textbf{0.96}*\pm0.10$
Runtime (min) \downarrow	$\textbf{0.93} \pm \textbf{0.94}$	$\textbf{3.01} \pm \textbf{0.72}$	$\textbf{0.75} \pm \textbf{0.07}$	$\textbf{0.10}*\pm0.09$
Length \downarrow	$\textbf{1.69} \pm 0.89$	$\textbf{7.81} \pm \textbf{6.88}$	$\textbf{1.04} \pm \textbf{0.39}$	2.00 ± 1.28
		Mutagenesis		
Metric	CELOE	OCEL	ELTL	CLIP
Acc. ↑	$\textbf{0.99} \pm \textbf{0.00}$	$\textbf{0.71} \pm \textbf{0.45}$	$\textbf{0.37} \pm \textbf{0.43}$	$\textbf{0.99} \pm 0.00$
F1 ↑	$\textbf{0.81} \pm \textbf{0.35}$	-	$\textbf{0.29} \pm \textbf{0.40}$	$\textbf{0.93}*\pm0.18$
Runtime (min) \downarrow	$\textbf{0.70} \pm \textbf{0.77}$	$\textbf{2.39} \pm \textbf{0.18}$	$\textbf{0.29} \pm \textbf{0.16}$	$\textbf{0.07}*\pm0.05$
Length \downarrow	$\textbf{2.79} \pm \textbf{1.17}$	12.63 ± 7.03	$\textbf{1.10} \pm \textbf{0.81}$	2.20 ± 1.16
		Semantic Bible		
Metric	CELOE	OCEL	ELTL	CLIP
Acc. ↑	$\textbf{0.99} \pm \textbf{0.02}$	$\textbf{0.66} \pm \textbf{0.47}$	0.59 ± 0.37	$\textbf{0.99} \pm 0.00$
F1 ↑	$\textbf{0.97} \pm \textbf{0.10}$	-	$\textbf{0.57} \pm \textbf{0.38}$	0.98 ± 0.05
Runtime (min) \downarrow	$\textbf{0.47} \pm \textbf{0.80}$	$\textbf{22.15} \pm \textbf{96.55}$	$\textbf{0.09} \pm \textbf{0.07}$	$\textbf{0.06}*\pm0.05$
Length \downarrow	$\textbf{3.85} \pm \textbf{2.44}$	$\textbf{9.54} \pm \textbf{5.73}$	$\textbf{1.38} \pm \textbf{1.76}$	$\textbf{2.52}*\pm1.26$
		Vicodi		
Metric	CELOE	OCEL	ELTL	CLIP
Acc. ↑	$\textbf{0.29} \pm \textbf{0.44}$	$\textbf{0.25} \pm \textbf{0.43}$	$\textbf{0.28} \pm \textbf{0.44}$	$\textbf{0.99}*\pm0.00$
F1 ↑	$\textbf{0.25} \pm \textbf{0.44}$	_	$\textbf{0.25} \pm \textbf{0.44}$	$\textbf{0.97}*\pm0.09$
Runtime (min) \downarrow	1.30 ± 0.71	$\textbf{4.78} \pm \textbf{1.12}$	$\textbf{1.81} \pm \textbf{0.46}$	$\textbf{0.16}*\pm0.12$
Length \downarrow	10.79 ± 6.30	11.54 ± 6.00	$\textbf{11.14} \pm \textbf{6.11}$	$\textbf{1.68}*\pm0.98$

Ngonga: Explainable ML on KGs

Section 8

Summary

Ngonga: Explainable ML on KGs

72/78

Summary Open Questions

- Tensors: Variable ordering? Compressed data structure?
- RL: Reduce training costs? Hyperparameters? Embeddings?
- Evolutionary learning: Myopia? Runtime? Continuous data?

Summary

Open Questions

Holy Grail

- Can the selection of representations be automated?
- LEMUR and ENEXA
- Tensors: Variable ordering? Compressed data structure?
- RL: Reduce training costs? Hyperparameters? Embeddings?
- Evolutionary learning: Myopia? Runtime? Continuous data?

Summary Thank You!

Joint works with Alexander Bigerl, Caglar Demir, Hamada Zahera, N'Dah Jean Kouagou, Nikoloas Karalis, Stefan Heindorf, Mohamed Sherif, Muhammed Saleem, and many more

Thank You! Questions?

- https://dice-research.org
- https://twitter.com/DiceResearch
- https://twitter.com/NgongaAxel

References I

[Barr, 1989] Barr, A. H. (1989).

The einstein summation notation: Introduction and extensions. SIGGRAPH 89 Course notes# 30 on Topics in Physically-Based Modeling, pages J1–J12.

[Bigerl et al., 2020] Bigerl, A., Conrads, F., Behning, C., Sherif, M. A., Saleem, M., and Ngonga Ngomo, A.-C. (2020). Tentris-a tensor-based triple store.

In International Semantic Web Conference, pages 56-73. Springer.

[Bin et al., 2016] Bin, S., Bühmann, L., Lehmann, J., and Ngonga Ngomo, A.-C. (2016).

Towards sparql-based induction for large-scale rdf data sets. In *ECAI 2016*, pages 1551–1552. IOS Press.

References II

[Demir and Ngonga Ngomo, 2021] Demir, C. and Ngonga Ngomo, A.-C. (2021).

Drill-deep reinforcement learning for refinement operators in *alc*. *arXiv preprint arXiv:2106.15373*.

 [Heindorf et al., 2022] Heindorf, S., Blübaum, L., Düsterhus, N., Werner, T., Golani, V. N., Demir, C., and Ngonga Ngomo, A.-C. (2022).
 Evolearner: Learning description logics with evolutionary algorithms. In *Proceedings of the ACM Web Conference 2022*, pages 818–828.

[Kahneman, 2011] Kahneman, D. (2011). *Thinking, fast and slow.*

Macmillan.

References III

[Kouagou et al., 2022] Kouagou, N., Heindorf, S., Demir, C., and Ngonga Ngomo, A.-C. (2022). Learning concept lengths accelerates concept learning in alc. *Proceedings of ESWC*.

[Lehmann and Hitzler, 2010] Lehmann, J. and Hitzler, P. (2010). Concept learning in description logics using refinement operators. *Machine Learning*, 78(1):203–250.

[Mao et al., 2016] Mao, H., Alizadeh, M., Menache, I., and Kandula, S. (2016).
 Resource management with deep reinforcement learning.
 In Proceedings of the 15th ACM workshop on hot topics in networks, pages 50–56.

References IV

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015).
Human-level control through deep reinforcement learning. *nature*, 518(7540):529-533.