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Where We Are Today
(Surgeon and patient in a same room)
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Where We Wish to Be Tomorrow
(Surgeon and Patient Remotely Located)
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Key Enabler
(Machine Learning)

Supervised Learning in ML Unsupervised Learning Method
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Presentation map

- Remote Tactile Internet Robotic Surgery
- Robotic surgery
- Remote robotic surgery and challenges

- Machine Learning for Remote Tactile
Internet Robotic Surgery

- Machine Learning Basics
- Use Cases
- Predicting delayed / lost packets
- Predicting packets that will be lost
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Outline

Remote Tactile Internet Robotic
Surgery and its Challenges

Machine Learning for Tackling the
Remote Robotic




Remote Tactile Internet Robotic Surgery
and the Challenges ...
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On Robotic Surgery




What is It?

- Got very popular with Da Vinci robot 1n the
early 2000s

v Expert surgeon

v'Surgeon console
* Stereoscopic/immersive view of the patient inside

* Hand manipulators and foot pedals to control the
robot arms

v'Robot

o Fully controlled by the surgeon (No
autonomy) — Robotic assisted surgery

» Arms
» Surgical instruments ...
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What is It?

= Used in all phases of surgery
v’ Access to the body cavity
v’ Tissue dissection
v'Tissue reconstruction
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What is It?

= Applicable to almost any surgery today
v Urology
v'Heart
v’ Appendectomy
v etc
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Why?

v'"More precision
v Immersive view for the surgeon

v'Several benefits for the patient
» Less blood loss
»Less pain
» Much speedier recovery time

et



What are the key issues?

v Cost
* Capex: Purchase: 2 — 5 Million USD

* Opex: Instruments to change after each surgery
* Training of expert surgeons

* Training of expert surgeons
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What are the key issues?

= Limited access

v Few deployments in
* small cities
* Rural areas
* Developing countries
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The Situation in Africa
= Egypt (Very first)

= South Africa (A few ...)
v’ e.g. Cape Town

* Recent deployment in a public hospital — 2022

* “Celebration” of the very first female robotic
surgeon 1n South Africa (Farzana Cassim)
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On Remote Robotic Surgery
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What is It?

Surgeon and patient far from each other
v Expert surgeon

v'Surgeon console

v" Network
e 5G/6G
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What is It?

It 1s actually an example of a wider range of
applications known as Tactile Internet Application



On Tactile Internet

v A baby step towards the Internet of the Senses
foreseen for 6G (Focus: Touch)
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On The Tactile Internet

Tactle Internet Networking

Infratructure
Human System Interface
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On Tactile Internet

v A natural evolution of the Internet

Tactile

Internet

Mobile
Internat
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On Tactile Internet

v A natural evolution of the Internet

* Haptic communications over networks in addition
to data/audio/video

o Haptic communications:

» Transmission of Cutaneous and kinesthetic
feedback
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On Tactile Internet

v A very powerful concept -

o Skills delivery over networks (e.g. remote
robotic surgery, remote repair)

o Emotion/feeling/Sensation  delivery  over
networks (e.g. remote “hugs”)
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Why Tactile Remote Robotic Surgery?

v'Transfer of skills over networks

o Surgeon 1n a capital city operating on a patient
in a rural area

o Surgeon in a developed country operating on
a patient in a developing country



What are the challenges of Tactile Remote
Robotic Surgery?

v Pretty easy to guess -
o Computational challenges

o Communication challenges
» Ultra low latency
» Ilms RTT for remote robotic surgery
» Ultra high reliability
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What are the challenges of Tactile Remote Robotic
Surgery?

v" A bit less easy to guess -
o Intelligence challenges

» What if the packet does not reach in time in
remote surgery session?

» Haptic message lost/delayed?
» Haptic teedback lost/delayed?
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Tactile Remote Robotic Surgery today
(Done over a 5G Network)

SG and remote robotic surgery
(World first 5G remote robotic surgery — early 2019)
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Tactile Remote Robotic Surgery today
(Done over a SG Network)

S5G and remote robotic surgery
(World first 5G remote robotic surgery — early 2019)
However, it was on pig ...

There are now simple remote robotic surgery on humans (e.g.
orthopedic surgeries)

https://www.tellerreport.com/business/2021-03-04-%0A---the-first-
domestic-5g-remote-orthopedic-robot-assisted-trauma-surgery-
completed%0A--.SyBgxr-AG_.html

There is no intelligence component and
procedures are rather restricted (e.g orthopedic
surgeries)
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Machine Learning for Remote Tactile
Internet Robotic Surgery ...
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On Machine Learning
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What is It?

“ Bring to systems the ability the ability to actively
learn and improve their behavior without the need to
be programmed”

- Learning process
- Study 1nput to detect patterns or regularities



What Is It?

An example: Knot tying trajectory in surgery

- Set of knot tying trajectories performed by several
surgeons

- Mathematical model

- Examples of factors: angle velocity, rotational
velocity

- Prediction of the next surgeme (gesture) based on the
current state of the system

- Comes 1n very handy for predicting a lost haptic
message
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How is it done?

Some examples:

https://techvidvan.com/tutorials/types-of-machine-
learning/




How is it done?

Some examples (e.g. SVM, KNN ....)
Supervised Learning in ML
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How is it done?

Some examples (K-Means )
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How is it done?
Some examples

Reinforcement Learning in ML

Reward W
DOG (Agent)
l State (Action) d
Sitting Walk

EEEEEEEEEE

s



Machine Learning for Remote Tactile
Internet Robotic Surgery ...
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The Problem
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The Problem

TABLE 11
KNOT TYING GESTURE VOCABULARY [21]

Gesture Index |Gesture Description

Q1] The surgeon picks up needle with right hand

Q12 The surgeon picks up needle with left hand

Q13 The surgeon makes a C loop around right hand

Q14 The surgeon picks up suture with right hand

Q15 The surgeon pulls suture with both hands to tie a
knot
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The Problem

v What happens if any of these messages does
not reach in time?

v'The requirements are very stringent

* Ultra-low latency (1-10~ms) . ML techniques
with fast prediction times are needed to achieve
ultra-low latency communications.

* Ultra-high reliability (99.999%). A machine
learning scheme with fine-tuning capabilities 1s
required to prevent over-fitting the limited datasets
and run accurate predictions.
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The Potential solutions

v In reactive prediction, the predictor reacts
when a packet does not reach within the set
time by predicting its content.

v'In proactive approach, predictor first predict
packets that might get lost/delayed and then
proactively predict their content before the
delay/loss happens.
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Reactive approach
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Reactive approach

Demonstrations

=

.

Training
Sequence

Fig. 2. Training dataflow
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Reactive approach

Surgeon Domain: Patient Domain:
Montreal Quebec city
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Fig. 3. On-line retrieval dataflow
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Reactive approach
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Proactive Approach: Centralized Learning
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Proactive Approach: Centralized Learning
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Conclusions

Robotic surgery is here to stay because of the benefits to the patients and
despite its cost (Capex, Opex, and training of expert surgeons)

Remote robotic surgery will certainly become somehow popular because of
6G and the progress in Machine learning

However, the robot will probably never fully replace the human surgeon
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